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SUMMARY

Prandtl's basic mixing length model was used to compute 22 of the 24 test cases

for the Langley Working Conference on Free Turbulent Shear Flows. The calculations

employed appropriate algebraic length scale equations and single values of mixing

length constant for planar and axisymmetric flows, respectively. Good agreement with

data was obtained except for flows, such as supersonic free shear layers, where large

sustained density changes occur. The inability to predict the more gradual mixing in

these flows is tentatively ascribed to the presence of a significant turbulence-induced

transverse static-pressure gradient which is neglected in conventional solution pro-

cedures. Some type of an equation for length scale development was found to be nec-

essary for successful computation of highly nonsimilar flow regions such as jet or

wake development from thick wall flows.

SYMBOLS

Cp

Cp

Cp = CP, e

D

k

l sd

specific heat at constant pressure

nozzle diameter

geometry parameter, 0 or 1 for two-dimensional or axisymmetric flow,

respectively

thermal conductivity

mixing length

mixing length associated with second-derivative term in equation (5)
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l/5 mixing length constant

M Mach number

Npr Prandtl number, /.tcp/k

NSc Schmidt number

P static pressure

/Xp static-pressure difference across shear layer

R constant in equation of state for a perfect gas

Rb Reynolds number based on characteristic body dimension, _eUerb/Pe

radial coordinate

_= r

r b

r b characteristic body dimension

T static temperature

-- T
W =_

Te

U mean velocity in streamwise direction

UD

Ue

uv turbulent shear stress

V mean velocity in transverse direction

t

V fluctuating velocity in transverse direction

w=l_ u
U e
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X

_=x
r b

Y

r b

Y.99'Y.995

5

rb

0

_e

0

Pe

ff

streamwise coordinate in physical plane

transverse coordinate in physical plane

value of _ where
U - U__

ue - u¢_
-- = 0.01, 0.05, 0.95, 0.99, 0.995, respectively

concentration

mixing angle in wake flows

ratio of specific heats

width of mixing region

eddy kinematic viscosity

streamwise Von Mises coordinate

momentum thickness

dynamic viscosity

density

spreading parameter
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T

÷

spreading parameter when
u 2
J=0

u 1
and M - 0

transverse Von Mises coordinate; or shear stress

nondimensional transverse Von Mises coordinate,

mixing angle for jet flows

Peue)l/l+Jrb

Subscripts:

C end of potential core

center line

external stream

i initial

ip inflection point

jet exit plane

laminar

n nth species

P primary flow

S secondary flow

turbulent

high-velocity side of shear layer

I,II

HI
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low-velocity side of shear layer

regions I and II in jet flows (figs. 2 and 4) and wake flows (fig. 3)

region III in jet flows (figs. 2 and 4)



Superscript:

j geometry parameter where j = 0 in two-dimensional flows and j = 1 in

axisymmetric flows

THE MIXING LENGTH CONCEPT

The classic phenomenological model for the turbulent shear stress is the mixing

length theory (refs. 1 and 2) developed by L. Prandtl in 1925. Although the model lacks a

rigorous physical basis, it has nonetheless proved to be quite successful in both boundary-

layer and free shear flow calculations.

In formulating his model, Prandtl assumed that the Reynolds stres_ -s produced by

momentum transfer normal to the mean flow direction from regions of high momentum to

regions of low momentum. The mixing length l is then defined (in rough analogy to the

mean free path of a molecule) to be the average distance over which a fluid element trans-

fers momentum. A detailed description of the model's theoretical development is avail-

able in many texts (e.g., ref. 3, p. 277 and ref. 4, p. 545).

Mathematically, for quasi-parallel shear flows the eddy viscosity is expressed as

the product of the square of the mixing length and the absolute value of the local mean

velocity gradient, that is,

Therefore, the turbulent shear stress for two-dimensional or axisymmetric flow becomes

Ou 20u _u (2)

where the mixing length is generally taken to be the product of an empirically determined

constant and some characteristic scale of the mixing region, that is,

or

l = Constant x 6

Constant =/-- (3)
6
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Thus,

_/l \2°2} _u _u (4)

Equation (4) has been widely used in the calculation of a variety of flows with both

analytical and numerical solution methods. After early use in pipe flow and flat-plate

boundary-layer analytical solutions, the mixing length model has been particularly suc-

cessful in the numerical computations of both incompressible (e.g., refs. 5 and 6) and

compressible (e.g., refs. 7 and 8) turbulent boundary-layer flows with appropriate defini-

tions of the mixing length specified for the "wall" and "wake" regions. For example,

Patankar and Spalding (ref. 7) defined the mixing length as a numerical function of the

distance from the wall and the boundary-layer thickness. Bushnell and Beckwith (ref. 9)

then extended the use of the mixing length model to include the compressible nonequilib-

rium case.

A number of well-known approximate analytic solutions were developed for low-

speed free flows by using Prandtl's mixing length model. Prandtl studied the smoothing

of a velocity discontinuity (ref. 4, p. 687) and assumed similar velocity profiles. Tollmien

assumed similarity and presented solutions for both the circular jet (ref. 4, p. 699) and the

two-dimensional jet (ref. 4, p. 696) issuing into still surroundings as well as the two-

dimensional two-stream mixing layer (ref. 4, p. 689). Schlichting (ref. 4, p. 691) in his

thesis first examined the two-dimensional wake. Using measurements in the wake of a

circular cylinder, he found l/5 to be 0.18. Kuethe (ref. 10) extended Tollmien's solu-

tion for the mixing region of a plane jet to the general case of the mixing of two parallel

streams with different velocities. Kuethe also solved the problem of the mixing region

surrounding an axisymmetric jet issuing into still surroundings by assuming local simi-

larity. Using experimental measurements and taking the mixing length to be proportional

to the width of the mixing region, he obtained l/5 = 0.0705. Squire and Trouncer (ref. 11)

considered axisymmetric coaxial jets and used l/5 = 0.082.

Several objections to the mixing length concept have been raised. For instance,

according to equation (2) the eddy kinematic viscosity e always vanishes at points of

zero velocity gradient, a condition which is physically unrealistic (e.g., the center line of

a jet or wake). Prandtl (ref. 1) recognized this difficulty and proposed that e be con-

sidered proportional to a statistical mean of _u/ay in the vicinity of a velocity maximum.

The mixing length model for shear stress thus becomes

,5,
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where lsd is an additional length which must be determined experimentally. Equa-

tion (5) has seldom been used in analytical solutions because of the mathematical diffi-

culties of including its more complex form. (There is no such problem if numerical

solutions are employed.)

Another deficiency of the model given by equation (4) becomes evident in the study

of the two-stream mixing layers. In this case the analytic solution exhibits a discontinu-

ity in a2u/0y 2 at the mixing region boundaries instead of predicting the expected asymp-

totic approach of the mixing region velocity to the two free-stream values. Equation (5)

is free of this problem.

In addition, the original assumption of constant mixing length across the mixing

region has led to inaccurate predictions of the fluctuating components, according to

IAepmann and Laufer (ref. 12), despite generally good agreement of the mean velocity

profiles with experimental data.

Later Alexander,Baron, and Comings (ref. 13) demonstrated that Prandtl's original

development required the assumption that the turbulence intensity and mixing length be

isotropie. They concluded, however, that this first-order assumption did not seriously

limit the application of the model. The original physical concept of a mixing length seem-

ingly requires that its magnitude be small in comparison With mean flow dimensions.

Howe,/er, the fact that it has been found experimentally (ref. 14) that the mixing length is

not small in comparison with mean flow dimensions is often considered a basic defect of

the mixing length theory.

Recently several authors (e.g., ref. 15) have shown, by means of the turbulent kinetic

energy approach, that the mixing length hypothesis implies that production equals dissipa-

tion of turbulence energy. Comparison of figures 6-9 and 7-44 in Hinze (ref. 3) shows

that this assumption is much more defensible in boundary layers than in free shear flows.

Most investigators abandoned the mixing length in favor of Prandtl's later constant

exchange coefficient eddy viscosity model (ref. 16), whose mathematical definiUon was

more easily incorporated into analytical solutions. This "new" model overcame some of

the difficulties of the mixing length model and gave slightly better agreement with experi-

mental data. It has become historically the most widely used incompressible model.

Recently Elassar and Pandolfini (ref. 17) numerically investigated the compressible

free shear layer in a backstep region and conchided that l/8 must have different values

in the similar and nonsimilar regions. Wagner (ref. 18) used the mixing length model with

the second-derivative term (eq. (5)) and / = lsd = 0.08 to correctly predict the develop-
5 6

ment of the hypersonic turbulent wake produced by a wedge.

The _.-_*attempt ,n _,y_,,_,_o÷_on,,_n.1,,the mixing length ,_nt1,_1,n _ _ignlflr_nt

range of free turbulent flows was llarsha's study (ref.19) of eddy viscosity models.
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Harsha applied a single mixing length constant, 0.082 (the value used by Squire and

Trouncer (ref. 11)), to both compressible and incompressible flows. Apparently, for all

regions except the potential core of a jet, he defined the width parameter to be twice the

half-velocity radius (the radius for which u=(uc+Ue)/2). In the shear-layer region of

jets he used the width of the mixing region. This approach led to poor overall agreement

with the selected experimental data although he obtained good prediction of the velocity

potential core length for the subsonic circular jet and the subsonic coaxial air-air mixing

cases. His predicted potential core was too short for the compressible jet issuing into

still air and too long for hydrogen-air coaxial mixing flows with mass flow ratio PeUe/pjuj

greater than 2.0. For all these calculations, the asymptotic slope and the center-line

velocity decay curve was underpredicted. However, the mixing length model did predict

the early center-line velocity increase for both an axisymmetric and a two-dimensional

subsonic wake very satisfactorily, although the downstream values were underpredicted

in both cases.

THE "RATIONAL" APPROACH

The present effort was the result of a desire on the part of the conference organiz-

ers to have the mixing length eddy viscosity model compared with newer formulations.

Recent success (refs. 9, 20, and 21) at Langley in the use of Prandtl's model in high-

speed boundary layers indicated that the model should be given further consideration in

free shear flows as well. Rather than repeat the Harsha approach (ref. 19) with the 24

conference test cases, an approach which might be termed a more "rational" approach

was selected in which each class of flows would be given individual consideration. The

designation "rational" merely indicates that the approach was designed to better repre-

sent the actual physics of free mixing than can be accomplished by conventional use of

the basic model.

On the basis of boundary-layer experience, the so-called "rational" approach was,

at the beginning of the investigation, visualized as the inclusion of the following modifi-

cations in the basic mixing length model (eq. (2)):

(1) A consistent set of values for the proportionality constant l/5 were to be used.

Originally it seemed that this might involve a different constant for each region of a jet

or wake. However, the results to be presented in this paper indicate a single value of

l/5 for all two-dimensional flows and a single value for all axisymmetric flows, a con-

clusion in agreement with the experience of Spalding's group at Imperial College (refs. 15

and 22 and paper 11 of this compilation).
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(2) Most importantly, a simple length scale equationwould be included to provide a
reasonable transition from the relatively small scale of turbulent motion in the shear
layer of a jet to the larger scales of turbulence in the far field. Similar consideration
would be given to wake and coaxial flows developingfrom wall flows. This approachhad
beensuccessfully used in the slot injection studies of references 20and 21.

(3) Recentexperience (ref. 23) in turbulent-boundary-layer calculations has shown
a pronouncedincrease in turbulent shear stress near the end of transition and the begin-
ning of turbulent flow. This "low Reynoldsnumber effect" was to be investigated for any
relevant free shear flow test cases. However, for the test casesconsidered herein this
effect was not included due to the lack of information concerning possible magnitudesand
variations of the "low Reynoldsnumber effect" in free turbulent flows.

(4) The use of an intermittency factor in the calculation procedure was to be
explored. Wagner (ref. 18)had previously usedintermittency in his hypersonic wake
calculations.

(5) The effect of including the second-derivative term in the mixing length model
(i.e., eq. (5)) would be studied for someof the test cases.

SOLUTIONPROCEDUREANDTURBULENCEMODELS

Basic Equations

Solutionswere obtainedby using a computer codedevelopedby Sinha, Fox, and
Weinberger (refs. 24 and 25) for chemically nonreacting, quasi-parallel shear flows.

The boundary-layer equationswith suitable boundary conditions are assumedto
describe the motion of free shear flows. Only quasi-parallel flows are considered.
Effects of longitudinal curvature andtransverse pressure gradient are not included.
the mixing of dissimilar ideal gasesthe governing equationsare as follows:

Conservation of mass

For

(6a)

Conservation of streamwise momentum

pu 8____u+ pv 8.._u= %Pe +
8X _,7 _v

j v_x yj YJ
(6b)
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Conservation of energy

aT 0T u 8Pe +--I _IkY" B_y?I] + G10ul2 _ _n Ic+ p,n 8°in a_y_laypUCp_x÷pvcp_ : _x yj \_/ Nsc
(6c)

Conservation of nth species

_n _n 1 _ ___ 0_/
+ pv - yJ

pU_x _y yJ_ sc _y)
(6d)

where j = 0 or 1 for two-dimensional or axisymmetric flow, respectively.

ated boundary conditions are as follows:

At the center line (y = 0),

The associ-

Ou = aT =--=O°tn 0
ay ay ay

(6e)

for all values of x.

At the edge of the mixing region,

lim u(x,y) = u e
y-_

lim T(x,y) = T e
y_oo

lim an(X,y ) = an, e

..J

(6f)

Equations (6a) to (6f) are solved in the modified Von Mises plane defined by the fol-

lowing transformation:

(1 + j)TJ 0"r = puyJ (Ta)
ay
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and

._ d.,x= (l+j)-2
i

(8)

In the transformed plane only the momentum, energy, and species equations are

needed since the continuity equation is inherently satisfied in the definition of the trans-

formation. The transformed equations are then nondimensionalized with respect to

external stream conditions and rb, a characteristic length. It should be noted that

Wagner (ref. 18) has shown the analysis of references 24 and 25 to be incorrect for longi-

tudinal pressure gradient flows since the continuity equation was not satisfied by the non-

dimensional Von Mises transformation used in that analysis. The correctly transformed

equations of motion are as follows:

Momentum

Ou_ _ 1 2_d(lnue) su /___ -_d(lnue)_.r.___lxu _2j B_/o:+-:I (9a)

Energy

_ y2j _= 8:/ 1)Me2 d/lnue)/" p)
8T _ (1 Me2)d(lnue)8_+_-J _--_.P_ _ +
"_"=l+j d'_ 8-_ _ i_Tt'N-'-p'_pr _.j P'_"_) ('Ye- d_ C- 1

+

-- _ 2j _ 8_
(PP' -'_',_l u O'T_cp,n n

tN'_c_p)\_'l 8"-_- n 07
(9b)

Species

(i 21d(Inuel 8_n
8_n_ [ _ M e ..

8_ 1 + j d_ 8_
(9c)

Equations (9a) to (9c) were applied to turbulent flow by assuming that

(I0)
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and by using turbulent Schmidt and Prandtl numbers. Suitable expressions were used for

the laminar viscosity of the various gases used.

The flow was computed by using an implicit finite-difference technique (which is

described in detail in refs. 24 and 25) to march downstream from the initial input profile.

Use of Von Mises Transformation

Apparently, most of the available computer codes for quasi-parallel free viscous

flow solutions (e.g., refs. 7, 24, and 26) solve the boundary-layer equations in a Von Mises

plane rather than the physical plane. For programing simplicity, a constant step size in

the direction normal to the flow is usually assumed as in the procedure of reference 24.

From equation (Ta) this radial coordinate _" in the method of reference 24 is defined by

1/l+j

7-= /_ _ ts_Jd_/ (11)

Equation (11) shows that specifying equal _ steps implies specifying equal increments

of axial-direction mass flow across the computed region. Thus, larger steps (in terms

of the physical plane) are located in regions of relatively low velocity (with respect to the

free-stream or jet center-line velocity); this significantly reduces the accuracy in the

crucial mixing regions. This problem is particularly evident in the calculation of com-

pressible flows, especially the shear-layer calculations. As an example, in a typical

Mach 5 two-dimensional shear-layer calculation with u2/u 1 = 0.05, 49 of the 90 points

across the mixing region profile are located in the region where u is approximately

constant (U/Ul >--0.90).

Turbulence Models

In accordance with the "rational approach" previously outlined, a conceptually sim-

ple (i.e., first order) model for the length scale variation in the streamwise direction was

formulated for each of the major classes of flows. Thermal transport and mass transport

were related to the momentum transport through the use of constant values of the turbulent

Prandtl number and Schmidt number, respectively.

Two-dimensional shear layers.- Figure 1 shows the initial velocity profile used to

generate the two-dimensional shear layers of test cases 1, 2, and 3. The same type of

step profile was used for both the initial temperature and initial concentration profiles.

Because of the inaccuracies introduced by the Von Mises transformation at the edge of the

mixing region, the following definition for the width 5 of the region was necessary:

5 = (Scaling factor)(_.95 - _.05 ) (12)
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where Y.95 indicates the point in the mixing layer where u - u¢_) e - u¢_)= 0.95. The

scaling factor is necessary to obtain the "true" value of 5 _i.e., Y.99- Y.01) and was

taken to be 1.425 from the mean fit curve to the experimental data for two-stream mixing

given by Halleen (ref. 27). This definition of width was used also for test case 5 and in

the potential core region of all jet flows.

Since the initial boundary-layer profiles were given for test case 4, the two-

dimensional version of the "coaxial jet length scale model" was applied to that case.

Jets into still air.- Figure 2 shows the length scale model developed for jets issuing

into still air. The nondimensional mixing region width _ is partially defined by the mix-

ing angle _b. This definition allows a smooth transition between the relatively small mix-

ing scale at the end of the potential core (which is designated region I) and the large scale

turbulence downstream (region III).

For region I, 5I is given by equation (12); for region II,

5H = (Scaling factor)(_.95 - _¢_)+(_-_c)tan _b (13)

where _c is the location of the end of the potential core. Region II extends to the point

downstream at which 5II becomes 2(Scaling factor)(_.95 - __). Finally, in region IH,

5III = 2(Scaiing factor)(_.95 - __) (14)

The scaling factor for regions II and HI was taken to be 1.2 from the similarity profile for

a self-preserving jet given by Wygnanski and Fiedler (ref. 28).

Since the governing equations were nondimensionalized with respect to the external

streams, some small arbitrary edge velocity was necessary. However, the velocity ratio

Uc_/Ue at the initial profile had to be large enough to reasonably represent the physical

problem being studied but not so large that the accuracy on the low-velocity site would be

limited by the peculiarities of the Von Mises transformation discussed previously. The

values of u__/u e used in the initial profiles for the jets issuing into still air are listed in
the following table:

Test case Initial uC_/u e

6

7

8

18

19

34.65

35.37

41.80

70.0

55.30
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This lengthscale model was also usedto computetest case 13, a two-dimensional
jet in a moving stream.

Wakes.- Figure 3 showsthe length scale model employedin wakeflows. Again, a
linear variation definedby the angle /_ is assumed to approximate the increased scale

of turbulent motion when the boundary layers on the wake-generating body mix in the ini-

tial wake region. For region I in figure 3, the width 6 is given by

6i = (Scaling factor)(_.95 - _¢_) + (._ - _i)tan /3 (15)

where _i is the location of the start of region I which is usually the trailing edge of the

body. Region I terminates when the two terms in equation (15) are of equal magnitude.

The width 6 in region II is then given by

5II = 2(Scaling factor)(Y.95 - y¢_) (16)

The same scaling factor, 1.2, utilized in the jet flows downstream of the potential core

was also used for wake flows.

Coaxial jets.- The model shown in figure 4(a) was employed for coaxial jet flows.

The primary jet flow is assumed to mix with the initial boundary-layer flow in a region

whose growth is characterized by mixing angles _bl, _b2, and _b3. In all calculations

these angles were assumed to be equal. This model results in a radial distribution of 6,

such as the one shown in figure 4(b), and features two overlapping scales of turbulent

motion, 6Outer and 6Inner' given by

6inner = 6p,i + 2(x - xi)tan _ (17)

6Outer = (_.995 - _j)+(_-_i)tan _b (18)

where :_i is measured from the exit plane of the primary jet nozzle. In the calculations,

is 6Inner for _< _p and 6Outer for Y >rs" Between _p and rs, 6 is found

by a linear interpolation between 6Inner and 6Outer" The nondimensional radii _p

and _s are defined by

_p = l_j + (_ - :_i}tan _ (19)
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and

rs --

1 6s,i

{_j +6s,i+(x-xi)tan_b]

for x --<

for _ > Xc

(20)

where rj is the inner nozzle radius, Xc is the location of the end of the core region,

and 6s, i is the initial thickness of the external boundary layer. This length scale

modeling allows (to zeroth order) for the orderly growth of the initial boundary layer (or

shear layer) scales. Far downstream the more conventional approach of a single large

scale for the entire flow is recovered.

A differential equation for the local length scale would obviously be better than the

present approach just outlined. The purpose here is simply to point out that if the physics

of scale development is taken into account, predictions are considerably improved. In the

present approach, this scale development is handled in the simplest manner possible.

POSSIBLE INFLUENCE OF TRANSVERSE STATIC-PRESSURE

GRADIENT ON TURBULENT FREE MIXING

The conventional approach to turbulent free mixing calculations (the approach used

in the present paper) involves solving the boundary-layer equations with some turbulence

closure model. On the basis of an order of magnitude analysis, the normal (or trans-

verse) static-pressure gradient is assumed to be quite small in the basic boundary-layer

equations. By assuming constant static pressure in the transverse direction, the solution

of the normal momentum equation is unnecessary. Recent studies (refs. 29 and 30) indi-

cate that this assumption of constant static pressure is not correct in boundary layers

where there are large density changes across the layer. Changes in static pressure of

10 to 30 percent have been observed in nominally two-dimensional, high Mach number

(M > 6) boundary layers.

The normal momentum equation for two-dimensional turbulent quasi-parallel shear

flows takes the form

Oy _y
(21)
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where density fluctuations have beenneglectedin an order of magnitudeanalysis. Hinze
(ref. 3) notesthat for low-speed flows the normal static-pressure changesinduced by the
turbulence (from eq. (21))were 2 orders of magnitudelarger than the static-pressure
changesinducedby the meanflow. The basic question is whether or not the normal
static-pressure gradient inducedby the turbulence (eq. (21)) canbecomesufficiently
large to affect the spreading rate andturbulence structure of a free turbulent mixing
flow. The successof various calculation methods (turbulence closure models) in low-
speedflows indicates that the influence is most likely negligible in these flows. However,
large density changeswould presumably increase the magnitudeof the turbulence-induced
normal static-pressure gradient (from eq. (21)); therefore, the answer to the basic ques-
tion may well be that the spreading rate andturbulence structure are in fact affected
where large density changesoccur.

Estimates were madeof the probable static-pressure changefor an M1 = 5 free

shear layer obtained recently in the nozzle test apparatus at the Langley Research Center.

(These data are discussed in paper 2 by Birch and Eggers.) By using the integrated form

of equation (21) and estimates of v '2 from the subsonic shear layer of Liepmann and

Laufer (ref. 12), the change in static pressure for this flow would be of the order of a

100-percent decrease near the maximum shear region. Obviously v '2 and perhaps the

Reynolds stress must be lower than the normalized values of reference 12 for this M 1 = 5

case, since such a transverse static-pressure gradient would not be tolerated by the flow.

There are at least two possible mechanisms connected with a turbulence-induced

8p/By which could affect the spreading rate of a free turbulent shear flow:

(1) Direct influence of turbulence-induced 8p/_y upon the normal mean velocity v

and hence directly upon the spreading rate (refs. 31 and 32). A pressure gradient dp/dx

is imposed within the shear flow.

(2) Indirect influence of turbulence-induced 8p/_y upon v '2 and u'v' by means

of a turbulence field adjustment to decrease 8p/_y until a balance is achieved.

Obviously both of these mechanisms as well as others could be operating simultaneously.

The important point is that as the density change across a turbulent free mixing region

increases, the influence of the turbulence-induced 8p/By may become increasingly more

important, especially in determining the absolute physical dimensions of the flow field

(i.e., the entrainment rate).

Transverse static-pressure data for free shear layers are available in references 32

to 34. For low-speed flows the data indicate a minimum pressure of the order of 2 per-

cent near the inflection point in the velocity profile. The low-speed data of Lee (ref. 35)

and Jones and Spencer (ref. 36) indicate small static-pressure changes (less than 1 per-
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u2
cent) for shear layers with -- = 0.35 and 0.30, respectively. Further data for the trans-

u 1

verse static-pressure distribution in jets are available in references 31 and 37 and some

data for wakes are found in reference 38. The available data do seem to indicate an

increase of transverse static-pressure gradient with increasing Mach number across the

shear layer.

It is interesting to note that the integrated form of equation (21) is

or

u¢_2 ?'ip M¢-2 Rip Tip
(22)

where the subscript ip indicates the inflection point in the shear-layer profile. There-

fore, Mach number may well have an effect greater than simple density changes (caused

by gas composition) upon possible changes in entrainment rate due to 0p/_y.

The possibility that static-pressure variation may be responsible for the rather

large changes in spreading rate with Mach number noted in connection with test case 2 in

the present paper is entirely speculative at this point. There are several possible

approaches that could be used to investigate this possibility. One such method would be

to incorporate the complete normal momentum equation in a method such as Donaldson's

(ref. 39) where v '2 is directly computed. If an equation for v '2 is lacking, it could be

related to the Reynolds stress by some constant or function. Again, it would be necessary

to solve the normal momentum equation (including the convective terms). The best method

(i.e., most correct) of including the normal momentum equation would be a full field

Navier-Stokes solution with turbulence terms included. However, if molecular diffusion

of momentum is neglected in the normal momentum equation, a first-order solution may

be obtained numerically by including the equation in a streamwise iteration loop with the

usual boundary-layer equations.

There are, of course, other mechanisms which could also account for the disagree-

ment between experiment and theory for case 2. These possibilities include the increased

influence of p'v' and other terms in the second-order correlation equations. These
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terms are usually negligible at low speeds but presumably become more important at

high speeds. Currently there are no available models or data for these terms in high-

speed flows which could be used to check this hypothesis.

RESULTS AND DISCUSSION

Solutions were obtained for all 17 of the primary test cases and for five of the seven

optional cases. The two cases omitted were case 22, a hydrogen-air coaxial jet flow, and

case 23, a subsonic compound coaxial air jet. These cases were omitted because of

numerical and programing difficulties encountered rather than failure of the basic turbu-

lence models being used.

During the investigation it was found that l/5 could be considered a function only

of flow geometry. A value of 0.07 was used in all two-dimensional flows and 0.05 was

used in all axisymmetric flows including the shear-layer region of jets.

In general, for constant density subsonic flows the turbulent Prandtl and Schmidt

numbers were taken to be 1.0. For variable-density flows either 0.7 or 0.8 was used,

with the Prandtl number assumed equal to the Schmidt number in all cases.

Two-Dimensional Shear Layers

Test case 1.- Two-dimensional subsonic constant-density free shear layers were

computed for velocity ratios u2/u 1 of 0.05, 0.2, 0.4, 0.6, and 0.8 by using "step" input

profiles for velocity and temperature as previously described. Since the equations were

normalized with respect to the secondary stream, a nominally zero value of u 2 was not

possible in the present program; u2 = 0.05 was used in both test cases 1 and 2. The
Ul

results from the computations of test case 1 are shown in figure 5. The spreading

parameter a is defined by the following relationship:

_-1.8 5(x - XA) (23)
YB - YA

u - u 2

where YA and YB are the lateral distances between points at which Ul _ u2 is 0.1

and 0.9 at longitudinal stations X A and XB, respectively. The spreading parameter

is thus the reciprocal of the spreading rate of the shear layer.

Equation (12) was used to define the width 5, and l/t_ was taken to be 0.07. By

extrapolating the computed values of a to the case where u2/u 1 is zero, % was
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found to be 11.4. This value wasused to normalize the computedvalues of a. As shown
in figure 6, the results agree with the well-known relationship (from ref. 40)

ao u - u 2

a Ul + u2

Test case 2.- Two-dimensional shear layers were computed for five values of M 1

to determine the effect of Mach number on the spreading rate (test case 2). The results

are shown in figure 6 along with experimental data from references 12, 28, 31, 34, and 41

to 50 as well as the unpublished data recently obtained at the Langley Research Center at

M 1 = 5.0. These shear-layer data have been adjudged the most reliable by Birch and

Eggers in paper 2 of this compilation.

Equation (12) was used to define the width 6. With an l/6 of 0.07, only a slight

increase in a is predicted for increasing values of M 1 in striking contrast to much of

the available data. At M 1 = 5.0, the effect of decreasing the mixing rate by lowering l/6

is shown. The cause underlying the inability of the mixing length model to predict the

spreading rate of supersonic shear layers is perhaps directly related to the validity of

the fundamental assumptions inherent in the boundary-layer approach to free mixing prob-

lems. One possible explanation is the existence of a transverse static-pressure gradient

which could affect the turbulence spreading rate. The effect of such a pressure gradient

was previously discussed in detail in this paper. There is also the possible influence of

"low Reynolds number effects" as discussed by Birch and Eggers in paper 2. The data

that may be influenced by such effects are indicated in figure 6. It should also be noted
u 2 u2

that the values of a computed with u"l = 0.05 were scaled to correspond to u"l = 0

(using fig. 5).

Test case 3.- Test case 3 was designed to determine the effect of density ratio on

of fully developed two-dimensional shear layers. With _ = 0.2, calculationsthe growth

were made for shear layers with density ratio pl/P2 of approximately 1/14, 2, 7, and 14.
Pl 1

For all but the J = m shear layer, the density difference was accounted for in the pro-
P2 14

gram by two methods: the subsonic mixing of gases with different molecular weights, and

the mixing of two air streams with supersonic or hypersonic velocity in the primary
Pl 1

stream. The m = m shear layer was obtained by mixing hydrogen in the primary
P2 14

Pl
stream with air in the secondary stream. The J = 2, 7, and 14 shear layers were the

P2

result of mixing hydrogen and helium, helium and air, and air and hydrogen; the corre-
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sponding air into air equivalent density ratios were computed by using M 1 = 2.24, 5.48,

and 8.06, respectively. Turbulent Prandtl numbers of 0.7 and 0.8 were used for the dis-

similar gas and supersonic flows, respectively; the turbulent Schmidt numbers were also

0.7 and 0.8, respectively. Appropriate input profiles of the type shown in figure 1 were

used in each instance. The results, shown in figure 7, indicate that a is a similar func-

tion of density differences irrespective of the mechanism producing that difference. How-

ever, it should be remembered that in test case 2 the supersonic results were greatly in

error when compared with the data.

Test case 4.- Test case 4 considers the subsonic mixing of two streams initially

developed on a symmetric airfoil with a 10 ° trailing edge. The coaxial jet length scale

model was used for this calculation. A representative small angle of 8 ° (the value used

in the slot injection studies of refs. 20 and 21) was used. The predicted profiles at two

locations, x = 12.7 cm and x = 76.2 cm, are compared with Lee's experimental mea-

surements (ref. 35) in figures 8(a) and 8(b), respectively. For this test case and test

case 5, the computed profiles are matched with the experimental profiles at the point

where u = (u 1 - u2)/2 since the numerical calculation does not satisfy the proper bound-

ary conditions (ref. 51). The predicted profile at x = 12.7 cm indicates only slightly

more mixing than the experimental data. Much farther downstream at 76.2 cm the pre-

diction indicates significantly more mixing. Better agreement could have been achieved

by adjusting the angles _1, _2, and _b3 but such manipulation was beyond the intent of

the current investigation. It should be noted that the streams mix with a fairly large ini-

tial angle (10°).

Test case 5.- The Hill and Page (ref. 50) supersonic (M 1 = 2.09) shear layer (test

case 5) was computed with l/5 = 0.07, where 5 was defined by equation (12). Computed

profiles at two stations are shown in figure 9. The effect of the different boundary condi-

tions used in the computations is evident on the low-velocity side of the shear layer. The

data were obtained in a cavity-type flow and may be influenced by the "low Reynolds num-

ber effects." Both calculated profiles indicate more rapid mixing than the experimental

data, which is the expected behavior from the results of test case 2. (See section entitled

"Possible Influence of Transverse Static-Pressure Gradient on Turbulent Free Mixing.")

Jets Issuing Into Still Air

For all flows of this type the length scale model of figure 2 was employed. An 1/5

of 0.05 was used in all three regions of the axisymmetric jets including region I. The

value of l/5 should actually be varied from 0.07 at the nozzle exit where the shear layer

is thin and essentially two-dimensional to 0.05 at the end of the core where the flow is

fully axisymmetric. Hence, for flows with relatively short potential cores (e.g., test

cases 6 and 8) the use of a single value lower than the average value through the core
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results in less mixing and hencetoo long a potential case. The present model predicted
the decayof the center-line velocity remarkably well by using an angle ¢ of 8°.

Test case 6.- Figure 10 shows the results of the computation of the Maestrello and

McDaid subsonic jet (ref. 52). The potential core is longer than indicated by the experi-

mental data but the decay rate of the center-line velocity in regions II and III is well pre-

dicted. Test case 6 is an example of a jet for which l/5 must have a value near 0.07 in

the shear-layer region to correctly predict the core length.

Test case 7.- For the Eggers Mach 2.22 jet (ref. 49), the potential core length is

well predicted, but the agreement with the center-line velocity decay curve using q_ = 8 °

is not as good as the corresponding comparison in the previous subsonic jet flow in test

case 6. The prediction for test case q is shown in figure ll(a) with a _b = 89 ° calcula-

t.ion which corresponds to an immediate jump in length scale at the end of the core to the

region III value. This represents the usual method of applying the mixing length model to

jet flows (e.g., Harsha, ref. 19). Obviously the prediction of the center-line velocity

decay as the far field is approached is significantly improved by using a "length scale

equation" between the near field and far field. A prediction with _b = 0 ° is also shown.

Velocity profiles at three locations are shown in figures ll(b) and ll(c). These results

indicate that the correct profile is obtained when the center-line value is correctly

predicted.

Test case 8.- A value of 1/5 of 0.05 and mixing angle of 8 ° were used to predict

the high-temperature subsonic data of Heck (ref. 53). The center-line distributions of

velocity and temperature for test case 8 are given in figures 12(a) and 12(b), respectively.

As shown in these figures, the velocity potential core length is again incorrect although

the velocity decay rate outside the core is well matched. A turbulent Prandtl number of

0.7 predicts the temperature decay rate correctly.

Test case 18.- The fully developed axisymmetric jet data of Wygnanski and Fiedler

(ref. 28) provided a test of the far field length scale model in a subsonic flow (test case 18).

Starting with the given similarity profile at x/D = 60, a location in the self-preserving

region, the solution was obtained with l/5 = 0.05. With an initial velocity ratio Uc_/Ue

of q0, the computed spreading rate of the jet was found to be linear and in excellent agree-

ment with the data. Figure 13(a) shows the center-line velocity prediction over the range

of the data. The similarity of the data was retained in the calculations as shown in fig-

ure 13(b) where Xvo indicates the streamwise distance from the virtual origin of the jet.

Equation (14) was used to define 5.

Test case 19.- Test case 19 is a supersonic high-temperature jet (ref. 53) similar

to the subsonic jet of test case 8. The turbulent Prandtl number was assumed to be 0.7

and i/5 = 0.05 and _ = 8°. Fig-re !4(a) shows that the predicted potential core is too

long; however, the correct velocity decay rate is predicted as the far field is approached.
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Figure 14(b) indicates tha_ similar conclusions apply to the center-line temperature dis-

tribution. If the core length problem could be remedied for compressible shear-layer

mixing, the center-line variation would then probably be correctly predicted for the entire

flow field.

In all the compressible jet cases it should be noted that the near field (where the

present calculations give least accurate agreement with data) is the only region where

large density gradients occur. It is speculated that the mechanism responsible for the

disagreement in this region is the same mechanism operative in the supersonic free shear

layers. In the present paper it is suggested that this mechanism is related to turbulence-

induced static-pressure gradients. Other possible mechanisms operable in this region

are the "low Reynolds number effect" discussed by Birch and Eggers in paper 2 and the

l/5 adjustment from two-dimensional to axisymmetric.

Plane Jet in a Moving Stream

Test case 13.- The length scale model shown in figure 2 was used to predict subsonic

test case 13. No initial profile data were available other than the experimentally deter-

mined momentum thickness and uj/u e. A step velocity profile was selected so that

uj/u e was matched. Value of l/5 of 0.07 and a mixing angle of 8° gave an excellent

prediction of the center-line velocity distribution as shown in figure 15. Since the exter-

nal stream had a constant nonzero velocity, the experimental velocity ratio Uc_/Ue could
be accurately represented numerically, unlike the previously discussed jets issuing into
still air.

Coaxial Jet Flows

The length scale model shown in figure 4 was used for all flows of this type. A

value of l/5 of 0.05 was used in regions I and II. All solutions were started at the noz-

zle exit with the initial boundary-layer profiles. For the AEDC experimental data (test

cases 10, 20, and 21) these profiles were approximated by using the estimates of boundary-

layer thicknesses given in reference 54. The mixing angles q_l, _2, and @3 were
taken to be equal in all cases.

Test case 9.- Test case 9 represents the data of Forstall and Shapiro (ref. 55). The

suggested initial profile, which was adjusted to account for probable pitot probe positioning

errors, was used to start the solution. The results of the computation using l/5 = 0.05

and all mixing angles equal to 8 ° are shown in figure 16. The experimental center-line

velocity decay in region II is well predicted by using angles of 8 ° although the potential

core length is unpredicted. However, it should be noted that the core length is a function

of _b3 for a given l/5. As discussed previously, a larger average l/5 is needed in

the core.

88



Test case 10.- Figure 17 shows the results of applying the coaxial jet length scale

model to the subsonic hydrogen-air data of Chriss (ref. 56). Both the center-line velocity

and center-line hydrogen concentration variations for test case 10 are well predicted with

l/5 = 0.05 and mixing angles of 8°.

Test case 11.- Figure 18 shows the computational results for test case 11 which

represents an inner subsonic air jet mixing with an outer Mach 1.30 air jet studied by

Eggers and Torrence (ref. 57). Mixing angles of 2° gave better predictions of the center-

line velocity variation than did angles of 8 °. However, neither calculation predicted as

large a drop in center-line velocity as the data indicate and neither calculation correctly

predicted the rate of velocity increase as the far field is approached.

Test case 12.- Good prediction of the center-line velocity decrease for the hydrogen-

air data of Eggers (ref. 58) was obtained for test case 12 with l/5 = 0.05 and mixing

angles of 8 ° even though this choice of angle resulted in an underprediction of the potential

core length. The center-line velocity distribution is shown in figure 19(a). The same

prediction trend is also observed in the center-line hydrogen concentration variation as

shown in figure 19(b). The turbulent Schmidt and Prandtl numbers were both 0.8.

Test case 20.- Test case 20 represents the mixing of subsonic coaxial jets as mea-

sured by Chriss and Paulk (ref. 54). The best overall prediction with the coaxial length

scale model was achieved with mixing angles of 6o as shown in figure 20. The calcula-

tions with angles of 6 ° and 8 ° are shown for comparison; however, as discussed previously,

l/5 should actually have had a larger average value through the core region.

Test case 21.- As shown in figure 21(a) the coaxial model again predicted the cor-

rect center-line velocity decay rate for the subsonic hydrogen-air data of Chriss (ref. 56).

However, a value of l/6 of 0.05 gave an overprediction of the potential core length for a

mixing angle of 8°. An l/6 of 0.07 with all angles _ (i.e., _bl,_b2,_b3) equal to 8°

gives a better core length prediction. The concentration profile prediction for test case 21

is given in figure 21(b).

Wake Flows

The length scale model shown in figure 3 was used in computing all wake flows. In

addition, the effect of including the second-derivative term (eq. (5)) was investigated for

some of these wakes.

Test case 14.- The predicted center-line velocity distribution is shown in figure 22

for the two-dimensional wake data (test case 14) of Chevray and Kovasznay (ref. 59). By

using a value of l/5 of 0.07 and a mixing angle B of 8 °, a reasonably accurate overall

\/ /sd /)prediction is obtained. As expected, addition of the second-derivative term _with
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results in an increase in the mixing rate, the increase giving a more accurate velocity

rise in the near wake region while overpredicting the data as the far field is approached.

A calculation with _ = 89 °, which corresponds to using no linear variation in length scale

downstream of the body, is shown to demonstrate the improved prediction in the near wake

region with the present linear variation. The effect of the angle disappears as the asymp-

totic region is approached. A calculation with _ = 4 ° and no second-derivative term is

also shown for comparison.

The deviation between prediction and experiment in the far field is emphasized when

the data is plotted in terms of 1/w 2 where w__ is the center-line velocity defect.

Test case 15.- Computations of Chevray's axisymmetric wake (ref. 60) with /= 0.05
5

and /_ = 8° are shown in figure 23. The initial rapid increase of the center-line velocity

(due in part to the pressure gradient just behind the body) is not predicted even when the

second-derivative term ith --_ = is included. The second-derivative model, how-

ever, gives better downstream agreement than the basic model. Test ease 15 is an exam-

pie of a flow in which the vMue of _ probably should be high initially and lowered to 8 °

a few diameters downstream (as is done automatically by the method of ref. 20), but such

optimization was beyond the present intent.

Test case 16.- The asymptotic region of the plane supersonic wake of Demetriades

(ref. 61) is well predicted with / = 0.07 and /_ = 8 °. (See fig. 24.) The second deriva-
5

tive increases the mixing rate only slightly for test case 16.

Test case 17.- The supersonic (M = 3.0) axisymmetric wake data of Demetriades

(ref. 62) is underpredicted for test case 17 with / = 0.05 and /_ = 8 ° even though the
5

second-derivative term is included. (See fig. 25.) The calculation was started at x = 17,
D

a location actually near the end of the transition region; hence these data may be influ-

enced by the "low Reynolds number effects." Assuming turbulent flow at x = 17 results
D

] \

in an underprediction of the data in the turbulent region(D> 20).

Test case 24.- The two-dimensional supersonic wake data of Demetriades (ref. 63)

include data in the transiti°n regi°n (602"9 = x -< 938"4) "D The wake-generating wedge was

heated so that transition would occur far downstream of the model. The calculation for

test case 24 was started in the laminar region at x = 183.7. In reference 64 Demetriades
D
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gives the experimental streamwise distribution of the intermittency factor on the wake
center line for the corresponding unheatedflow. This distribution wasused to compute
throughthe given region of transitional flow. Suchan approachhad previously been
employedby Harris (ref. 65)who usedthe streamwise intermittency function of Dhawan
and Narasimha (ref. 66)in the computationof compressible boundarylayers. The results
shownin figure 26 indicate that the datawere slightly underpredicted in the laminar and
transitional regions with improved agreement in thefully turbulent region. A wake flow
mixing angleof 8° was used.

CONCLUDINGREMARKS

Prandtl's mixing length model hasbeenapplied in a consistent manner to compute
the wide range of free turbulent mixing flows selectedas test casesin this compilation.
On the basis of these computations, the following concludingremarks canbe made.

The mixing length constant 1/5 was found to be lower in axisymmetric flows than

in planar flows. With 1/5 = 0.05 in axisymmetric flows and 0.07 in two-dimensional

flows, the calculations compare very favorably with the data for jets downstream of the

core, wake flows, and low-speed shear layers.

For the mixing of flows with differing or developing turbulent length scales (such as

near field to far field transition region in a jet and wake flows developing from boundary

layers), some method of correctly determining the local length scale should be used. In

the present paper, a linear algebraic function based on modeling the physical spreading of

the turbulence was used. Perhaps a more satisfactory approach would be the use of one

of the various "two-equation" turbulence models of Spalding's group (paper 11 of this com-

pilation) where a differential length scale equation is solved.

The mixing length model was unable to successfully compute the spreading rates of

free shear layers with large sustained density differences. This inability is tentatively

ascribed to the assumption of constant static pressure in the transverse direction (the

conventional quasi-parallel flow assumption). Therefore, a successful calculation method

for this class of flows (free turbulent mixing flows with sustained large density changes o___r

differences) may necessitate including equations for the mean normal momentum and v '2.

As discussed by Birch and Eggers in paper 2 of this compilation, there seems to be

an important "low Reynolds number effect" in some of the available data. However, fur-

ther analysis of the data is needed before this effect can be incorporated into prediction

methods.
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DISC USSION

H. McDonald: Can we regard this paper as a yardstick by which to judge the other pre-

dictions; in other words, if you cannot do any better than Prandtl's mixing length, then

why bother? That is the first question I would like for you to try and answer. The sec-

ond one is, are you advocating a development of Prandtl's mixing length and should this

work be pursued, or do you think that this is the point at which to abandon the specific

concept of mean field-direct relation with the turbulence and go on perhaps to the turbu-

lence kinetic energy equation and multiequation models of turbulence?

D. H. Rudy: Since a length scale equation has been added to the basic mixing length

model, the calculations cannot be regarded as baseline calculations in the classical sense.

The Imperial College paper has that type of mixing length calculation. Our use of the

mixing length is merely an attempt to better represent the physics of turbulent mixing in

nonequilibrium flows. The Conference Evaluation Committee is of course best qualified

to determine what this approach means in terms of other prediction methods. Personally,

I think that approaches like the various "two-equation" models which incorporate a length

scale equation appear promising.

D. M. Bushnell: We use this thing just as a tool to analyze the flows. We've used other

tools before and the mixing length is a convenient handle to put on the flow to find out if

it is doing anything surprising. I think it is obvious that you want to continue development

and each method in the hierarchy has its own application, and I think I'll leave it at that.

V. W. Goldschmidt: I guess I have a similar question: What is the basis for determining

whether the model works or not? Is it strictly a comparison with mean velocity or are

we going to try to look at turbulence stresses as well? I think if we take that daring step

your conclusions would have to be rephrased a little bit differently. Am I correct?

D. H. Rudy: Yes, we have examined only mean flow quantities and not the details of the

turbulence which are of course more sensitive to modeling. Perhaps the Evaluation

Committee will comment on this but I do agree with your observation.

H. McDonald: I'm sorry our time doesn't permit any more questions. I'd like to proceed

if I may.

Written Comments

S. J. Kline: For many decades most workers, including the discussor, have had the idea

that the mixing length and eddy viscosity were fundamentally different assumptions. How-

ever, recent developments suggest this is not so; there are two points. First, both are

closures which depend only on the local mean strain and scaling on the layer width. Sec-

ond, it follows from this that whenever one is used, there exists an equivalent formulation
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which is wholly consistent and equivalent within the accuracy of this level <_f approxima-

tion. In the case of Rudy and Bushnell's formulation, for example, one can write

(1)

If we also write

and equate

ay

in equation (1) and equation (2), we have

(2)

e = l 2 _.._u_. l 2 A.._UU
ay 6

and, since l is scaled on 6 (//6 = Constant), this is equivalent to e = k6 AU. Thus,

the differences observed in the two cases should arise from the forms and values taken

for the constants, and not from a fundamental difference between mixing length and eddy

viscosity formulations.

P. J. Ortwerth: The measured static-pressure defects which concern the authors have

been analyzed by myself prior to the formulation of my model. An order of magnitude

analysis shows that to first order the proper integration of the radial momentum equation

becomes

+ (pv)'v' = Pe (1)

and the normal velocity component remains a second-order term - that is,

<< (pv)'v' (2)

Further, equation (1) has been subsequently verified by Roger Craig in our laboratory by

comparing pv '2 measured with a hot wire anemometer, Thermo Systems model 1100,

and measured static pressure on jets.

137


